Friday, 28 March 2014

Electromagnetic tooth clutches

Introduction – Of all the electromagnetic clutches, the tooth clutches provide the greatest amount of torque in the smallest overall size. Because torque is transmitted without any slippage, clutches are ideal for multi stage machines where timing is critical such as multi stage printing presses. Sometimes, exact timing needs to be kept, so tooth clutches can be made with a single position option which means that they will only engage at a specific degree mark. They can be used in dry or wet (oil bath) applications, so they are very well suited for gear box type drives.
They should not be used in high speed applications or applications that have engagement speeds over 50 rpm otherwise damage to the clutch teeth would occur when trying to engage the clutch.
How it works – Electromagnetic tooth clutches operate via an electric actuation but transmit torque mechanically. When current flows through the clutch coil, the coil becomes an electromagnet and produces magnetic lines of flux. This flux is then transferred through the small gap between the field and the rotor. The rotor portion of the clutch becomes magnetized and sets up a magnetic loop, which attracts the armature teeth to the rotor teeth. In most instances, the rotor is consistently rotating with the input (driver). As soon as the clutch armature and rotor are engaged, lock up is 100%.
When current is removed from the clutch field, the armature is free to turn with the shaft. Springs hold the armature away from the rotor surface when power is released, creating a small air gap and providing complete disengagement from input to output.

No comments:

Post a Comment