Friday, 25 April 2014

Semi-automatic transmission

A hybrid form of transmission where an integrated control system handles manipulation of the clutch automatically, but the driver can still—and may be required to—take manual control of gear selection. This is sometimes called a "clutchless manual", or "automated manual" transmission. Many of these transmissions allow the driver to fully delegate gear shifting choice to the control system, which then effectively acts as if it was a regular automatic transmission. They are generally designed using manual transmission "internals", and when used in passenger cars, have synchromesh operated helical constant mesh gear sets.
Early semi-automatic systems used a variety of mechanical and hydraulic systems—including centrifugal clutches, torque converters, electro-mechanical (and even electrostatic) and servo/solenoid controlled clutches—and control schemes—automatic declutching when moving the gearstick, pre-selector controls, centrifugal clutches with drum-sequential shift requiring the driver to lift the throttle for a successful shift, etc.—and some were little more than regular lock-up torque converter automatics with manual gear selection.
Most modern implementations, however, are standard or slightly modified manual transmissions (and very occasionally modified automatics—even including a few cases of CVTs with "fake" fixed gear ratios), with servo-controlled clutching and shifting under command of the central engine computer. These are intended as a combined replacement option both for more expensive and less efficient "normal" automatic systems, and for drivers who prefer manual shift but are no longer able to operate a clutch, and users are encouraged to leave the shift lever in fully automatic "drive" most of the time, only engaging manual-sequential mode for sporty driving or when otherwise strictly necessary.
Specific types of this transmission include: Easytronic, Tiptronic and Geartronic, as well as the systems used as standard in all ICE-powered Smart-MCC vehicles, and on geared step-through scooters such as the Honda Super Cub or Suzuki Address.
A dual-clutch transmission alternately uses two sets of internals, each with its own clutch, so that a "gearchange" actually only consists of one clutch engaging as the other disengages—providing a supposedly "seamless" shift with no break in (or jarring reuptake of) power transmission. Each clutch's attached shaft carries half of the total input gear complement (with a shared output shaft), including synchronised dog clutch systems that pre-select which of its set of ratios is most likely needed at the next shift, under command of a computerised control system. Specific types of this transmission include: Direct-Shift Gearbox.
There are also sequential transmissions that use the rotation of a drum to switch gears, much like those of a typical fully manual motorcycle.These can be designed with a manual or automatic clutch system, and may be found both in automobiles (particularly track and rally racing cars), motorcycles (typically light "step-thru" type city utility bikes, e.g., the Honda Super Cub) and quadbikes (often with a separately engaged reversing gear), the latter two normally using a scooter-style centrifugal clutc

Steering damper

steering dampersteering stabiliser or sprint damper is a damping device designed to inhibit an undesirable, uncontrolled movement or oscillation of a vehicle steering mechanism, a phenomenon known in motorcycling as wobble, or in extreme cases, a tank-slapper. Modern motorbikes are unlikely to exhibit this behaviour in daily use thanks in part to better dampers and due to their very stiff front ends and other general improvements in design and tyre technology.

Multi-deck diffusers

In 2009, the Formula 1 grid was embroiled in controversy. The culprit was the so-called double-decker diffuser introduced at first by Brawn GPWilliamsF1, and Toyota Racing, but later put into use by every team. These three teams had exploited a loophole in the rules that allowed for more volume in the diffuser. The rules stated that the diffuser must start at a point aligned with the centerline of the rear wheels. The loophole allowed for holes in the underbody, perpendicular to the reference plane (not visible as a hole when viewed from directly above), that fed a diffuser channel that was above the main diffuser. This greatly increased the available downforce, and was worth about half a second per lap, according to Mike Gascoyne.The teams decided to allow the double-decker diffusers again for 2010. However, for 2011, the Formula 1 Technical Working Group decided to ban multi-deck diffusers.

Diffuser (automotive)

diffuser, in an automotive context, is a shaped section of the car underbody which improves the car's aerodynamic properties by enhancing the transition between the high-velocity airflow underneath the car and the much slower freestream airflow of the ambient atmosphere. It works by providing a space for the underbody airflow to decelerate and expand (in area, density remains constant at the speeds that cars travel) so that it does not cause excessive flow separation and drag, by providing a degree of "wake infill" or more accurately, pressure recovery. The diffuser itself accelerates the flow in front of it, which helps generate downforce.

Spoiler of Passenger vehicles

The goal of many spoilers used in passenger vehicles is to reduce drag and increase fuel efficiency.Passenger vehicles can be equipped with front and rear spoilers. Front spoilers, found beneath the bumper, are mainly used to decrease the amount of air going underneath the vehicle to reduce the drag coefficient and lift.
Sports cars are most commonly seen with front and rear spoilers. Even though these vehicles typically have a more rigid chassis and a stiffer suspension to aid in high speed maneuverability, a spoiler can still be beneficial. This is because many vehicles have a fairly steep downward angle going from the rear edge of the roof down to the trunk or tail of the car which may cause air flow separation. The flow of air becomes turbulent and a low-pressure zone is created, increasing drag and instability (see Bernoulli effect). Adding a rear spoiler could be considered to make the air "see" a longer, gentler slope from the roof to the spoiler, which helps to delay flow separation and the higher pressure in front of the spoiler can help reduce the lift on the car by creating down force. This may reduce drag in certain instances and will generally increase high speed stability due to the reduced rear lift.
Due to their association with racing, spoilers are often viewed as "sporty" by consumers.

Capacitor

capacitor (originally known as a condenser) is a passive two-terminal electrical component used to store energyelectrostatically in an electric field. The forms of practical capacitors vary widely, but all contain at least two electrical conductors (plates) separated by a dielectric (i.e., insulator). The conductors can be thin films of metal, aluminum foil or disks, etc. The 'nonconducting' dielectric acts to increase the capacitor's charge capacity. A dielectric can be glass, ceramic, plastic film, air, paper, mica, etc. Capacitors are widely used as parts of electrical circuits in many common electrical devices. Unlike aresistor, a capacitor does not dissipate energy. Instead, a capacitor stores energy in the form of an electrostatic field between its plates.
When there is a potential difference across the conductors (e.g., when a capacitor is attached across a battery), an electric field develops across the dielectric, causing positive charge (+Q) to collect on one plate and negative charge (-Q) to collect on the other plate. If a battery has been attached to a capacitor for a sufficient amount of time, no current can flow through the capacitor. However, if an accelerating or alternating voltage is applied across the leads of the capacitor, a displacement current can flow.
An ideal capacitor is characterized by a single constant value for its capacitance. Capacitance is expressed as the ratio of theelectric charge (Q) on each conductor to the potential difference (V) between them. The SI unit of capacitance is the farad (F), which is equal to one coulomb per volt (1 C/V). Typical capacitance values range from about 1 pF (10−12 F) to about 1 mF (10−3 F).
The capacitance is greater when there is a narrower separation between conductors and when the conductors have a larger surface area. In practice, the dielectric between the plates passes a small amount of leakage current and also has an electric field strength limit, known as the breakdown voltage. The conductors and leads introduce an undesired inductance and resistance.
Capacitors are widely used in electronic circuits for blocking direct current while allowing alternating current to pass. In analog filternetworks, they smooth the output of power supplies. In resonant circuits they tune radios to particular frequencies. In electric power transmission systems they stabilize voltage and power flow.

Brush contact angle

The different brush types make contact with the commutator in different ways. Because copper brushes have the same hardness as the commutator segments, the rotor cannot be spun backwards against the ends of copper brushes without the copper digging into the segments and causing severe damage. Consequently strip/laminate copper brushes only make tangential contact with the commutator, while copper mesh and wire brushes use an inclined contact angle touching their edge across the segments of a commutator that can spin in only one direction.
The softness of carbon brushes permits direct radial end-contact with the commutator without damage to the segments, permitting easy reversal of rotor direction, without the need to reorient the brush holders for operation in the opposite direction. Although never reversed, common appliance motors that use wound rotors, commutators and brushes have radial-contact brushes. In the case of a reaction-type carbon brush holder, carbon brushes may be reversely inclined with the commutator so that the commutator tends to push against the carbon for firm contact.

commutator

commutator is the moving part of a rotary electrical switch in certain types of electric motors or electrical generators that periodically reverses the current direction between the rotor and the external circuit. Commutators have two or more softer metallic brushes in contact with them to complete the other half of the switch. In a motor, it applies power to the best location on the rotor, and in a generator, picks off power similarly. As a switch, it has exceptionally long life, considering the number of circuit makes and breaks that occur in normal operation.
A commutator is a common feature of direct current rotating machines. By reversing the current direction in the moving coil of a motor's armature, a steady rotating force (torque) is produced. Similarly, in a generator, reversing of the coil's connection to the external circuit provides unidirectional (i.e. direct) current to the external circuit. The first commutator-type direct current machine was built by Hippolyte Pixii in 1832, based on a suggestion by André-Marie Ampère.

Operation of Alternator

Despite their names, both 'DC generators' (or 'dynamos') and 'alternators' initially produce alternating current. In a so-called 'DC generator', this AC current is generated in the rotating armature, and then converted to DC by the commutator and brushes. In an 'alternator', the AC current is generated in the stationary stator, and then is converted to DC by the rectifiers (diodes).
Typical passenger vehicle and light truck alternators use Lundell or 'claw-pole' field construction. This uses a shaped iron core on the rotor to produce a multi-pole field from a single coil winding. The poles of the rotor look like fingers of two hands interlocked with each other. The coil is mounted axially inside this and field current is supplied by slip rings and carbon brushes. These alternators have their field and stator windings cooled by axial airflow, produced by an external fan attached to the drive belt pulley.Larger vehicles may have salient-pole alternators similar to larger machines.Modern vehicles now use the compact alternator layout. This is electrically and magnetically similar, but has improved air cooling. Better cooling permits more power from a smaller machine. The casing has distinctive radial vent slots at each end and now encloses the fan. Two fans are used, one at each end, and the airflow is semi-radial, entering axially and leaving radially outwards. The stator windings now consist of a dense central band where the iron core and copper windings are tightly packed, and end bands where the windings are more exposed for better heat transfer. The closer core spacing from the rotor improves magnetic efficiency. The smaller, enclosed fans produce less noise, particularly at higher machine speeds.
The windings of a 3 phase alternator may be connected using either the Delta or Wye connection regime.  set-up.
Brush less versions of these type alternators are also common in larger machinery such as highway trucks and earth moving machinery. With two oversized shaft bearings as the only wearing parts, these can provide extremely long and reliable service, even exceeding the engine overhaul intervals.