Tuesday, 29 October 2013

Operation of alternator

Typical passenger vehicle and light truck alternators use Lundell or 'claw-pole' field construction. This uses a shaped iron core on the rotor to produce a multi-pole field from a single coil winding. The poles of the rotor look like fingers of two hands interlocked with each other. The coil is mounted axially inside this and field current is supplied by slip rings and carbon brushes. These alternators have their field and stator windings cooled by axial airflow, produced by an external fan attached to the drive belt pulley.
Compact alternator
Modern vehicles now use the compact alternator layout. This is electrically and magnetically similar, but has improved air cooling. Better cooling permits more power from a smaller machine. The casing has distinctive radial vent slots at each end and now encloses the fan. Two fans are used, one at each end, and the airflow is semi-radial, entering axially and leaving radially outwards. The stator windings now consist of a dense central band where the iron core and copper windings are tightly packed, and end bands where the windings are more exposed for better heat transfer. The closer core spacing from the rotor improves magnetic efficiency. The smaller, enclosed fans produce less noise, particularly at higher machine speeds.
Larger vehicles may have salient pole alternators similar to larger machines.
There are two separate types of alternators: the Delta set-up and the Wye set-up.

Friday, 25 October 2013

marine sextant

The second critical component of celestial navigation is to measure the angle formed at the observer's eye between the celestial body and the sensible horizon. The sextant, an optical instrument, is used to perform this function. The sextant consists of two primary assemblies. The frame is a rigid triangular structure with a pivot at the top and a graduated segment of a circle, referred to as the "arc", at the bottom. The second component is the index arm, which is attached to the pivot at the top of the frame. At the bottom is an endless vernier which clamps into teeth on the bottom of the "arc". The optical system consists of two mirrors and, generally, a low power telescope. One mirror, referred to as the "index mirror" is fixed to the top of the index arm, over the pivot. As the index arm is moved, this mirror rotates, and the graduated scale on the arc indicates the measured angle ("altitude").
The second mirror, referred to as the "horizon glass", is fixed to the front of the frame. One half of the horizon glass is silvered and the other half is clear. Light from the celestial body strikes the index mirror and is reflected to the silvered portion of the horizon glass, then back to the observer's eye through the telescope. The observer manipulates the index arm so the reflected image of the body in the horizon glass is just resting on the visual horizon, seen through the clear side of the horizon glass.
Adjustment of the sextant consists of checking and aligning all the optical elements to eliminate "index correction". Index correction should be checked, using the horizon or more preferably a star, each time the sextant is used. The practice of taking celestial observations from the deck of a rolling ship, often through cloud cover and with a hazy horizon, is by far the most challenging part of celestial navigation.

Tuesday, 22 October 2013

Speed Sensitive Steering

An outgrowth of power steering is speed sensitive steering, where the steering is heavily assisted at low speed and lightly assisted at high speed. The auto makers perceive that motorists might need to make large steering inputs while manoeuvering for parking, but not while traveling at high speed. The first vehicle with this feature was the citroen sm with its diravi layout although rather than altering the amount of assistance as in modern power steering systems, it altered the pressure on a centring cam which made the steering wheel try to "spring" back to the straight-ahead position. Modern speed-sensitive power steering systems reduce the mechanical or electrical assistance as the vehicle speed increases, giving a more direct feel. This feature is gradually becoming more common.

Sunday, 6 October 2013

google driver less car


 The Google driver less car is a project by  google that involves developing technology for autonomous car. The software powering Google's cars is called Google Chauffeur. Lettering on the side of each car identifies it as a "self-driving car." The project is currently being led by Google engineer sebastian thrun director of the  SAILand co-inventor of google street view Thrun's team at Stanford created the robotic vehicle stanley which won the 2005 darpa grand challengr and its US$2 million prize from the united states department of defense The team developing the system consisted of 15 engineers working for Google, including Chris Urmson, Mike Montemerlo, and Anthony Levandowski who had worked on the  darpa grand and urban challenges
The U.S. state of nevada passed a law on June 29, 2011 permitting the operation of autonomous cars in Nevada. Google had been lobbying for robotic car laws. The Nevada law went into effect on March 1, 2012, and the nevada department of motor vehicles issued the first license for an autonomous car in May 2013. The license was issued to a Toyota Prius modified with Google's experimental driverless technology. As of April 2013, Florida became the second state to allow the testing of autonomous cars on public roads. California became the third state to legalize the use of self-driven cars for testing purposes as of September 2012 when Governor Jerry Brown signed the bill into law at Google HQ in Mountain View.

Tuesday, 1 October 2013

happy gandhi jayanti

Electric pump

In many modern cars the fuel pump is usually electric and located inside the fuel tank. The pump creates positive pressure in the fuel lines, pushing the gasoline to the engine. The higher gasoline pressure raises the boiling point. Placing the pump in the tank puts the component least likely to handle gasoline vapor well (the pump itself) farthest from the engine, submersed in cool liquid. Another benefit to placing the pump inside the tank is that it is less likely to start a fire. Though electrical components (such as a fuel pump) can spark and ignite fuel vapors, liquid fuel will not explode and therefore submerging the pump in the tank is one of the safest places to put it. In most cars, the fuel pump delivers a constant flow of gasoline to the engine; fuel not used is returned to the tank. This further reduces the chance of the fuel boiling, since it is never kept close to the hot engine for too long.
The ignition switch does not carry the power to the fuel pump; instead, it activates a relay which will handle the higher current load. It is common for the fuel pump relay to become oxidized and cease functioning; this is much more common than the actual fuel pump failing. Modern engines utilize solid-state control which allows the fuel pressure to be controlled via pulse-width modulation of the pump voltage. This increases the life of the pump, allows a smaller and lighter device to be used, and reduces electrical load.
Cars with electronic fuel injection have an (ECU) and this may be programmed with safety logic that will shut the electric fuel pump off, even if the engine is running. In the event of a collision this will prevent fuel leaking from any ruptured fuel line. Additionally, cars may have aninertia switch (usually located underneath the front passenger seat) that is "tripped" in the event of an impact, or a roll-over valve that will shut off the fuel pump in case the car rolls over.
Some ECUs may also be programmed to shut off the fuel pump if they detect low or zero oil pressure, for instance if the engine has suffered a terminal failure (with the subsequent risk of fire in the engine compartment).
The fuel sending unit assembly may be a combination of the electric fuel pump, the filter, the strainer, and the electronic device used to measure the amount of fuel in the tank via a float attached to a sensor which sends data to the dash-mounted fuel gauge. The fuel pump by itself is a relatively inexpensive part. But a mechanic at a garage might have a preference to install the entire unit assembly.