Thursday 26 December 2013

Trunk pistons

Trunk pistons are long, relative to their diameter. They act as both piston and also as a cylindrical crosshead. As the connecting rod is angled for part of its rotation, there is also a side force that reacts along the side of the piston against the cylinder wall. A longer piston helps to support this.
Trunk pistons have been a common design of piston since the early days of the reciprocating internal combustion engine. They were used for both petrol and diesel engines, although high speed engines have now adopted the lighter weight slipper piston.
A characteristic of most trunk pistons, particularly for diesel engines, is that they have a groove for an oil ring below the gudgeon pin, not just the rings between the gudgeon pin and crown.
The name 'trunk piston' derives from the trunk engine, an early design of marine steam engine. To make these more compact, they avoided the steam engine's usual piston rod and separate crosshead and were instead the first engine design to place the gudgeon pin directly within the piston. Otherwise these trunk engine pistons bore little resemblance to the trunk piston: they were of extremely large diameter and were double-acting. Their 'trunk' was a narrow cylinder placed mounted in the centre of this piston. Media related to trunk pistons at Wikimedia Commons

The regimes of lubrication

As the load increases on the contacting surfaces three distinct situations can be observed with respect to the mode of lubrication, which are called regimes of lubrication:
  • Fluid film lubrication is the lubrication regime in which through viscous forces the load is fully supported by the lubricant within the space or gap between the parts in motion relative to one another (the lubricated conjunction) and solid–solid contact is avoided.
    • Hydrostatic lubrication is when an external pressure is applied to the lubricant in the bearing, to maintain the fluid lubricant film where it would otherwise be squeezed out.
    • Hydrodynamic lubrication is where the motion of the contacting surfaces, and the exact design of the bearing is used to pump lubricant around the bearing to maintain the lubricating film. This design of bearing may wear when started, stopped or reversed, as the lubricant film breaks down.
  • Elastohydrodynamic lubrication: Mostly for nonconforming surfaces or higher load conditions, the bodies suffer elastic strains at the contact. Such strain creates a load-bearing area, which provides an almost parallel gap for the fluid to flow through. Much as in hydrodynamic lubrication, the motion of the contacting bodies generates a flow induced pressure, which acts as the bearing force over the contact area. In such high pressure regimes, the viscosity of the fluid may rise considerably. At full elastohydrodynamic lubrication the generated lubricant film completely separates the surfaces. Contact between raised solid features, or asperities, can occur, leading to a mixed-lubrication or boundary lubrication regime.
  • Boundary lubrication (also called boundary film lubrication): The bodies come into closer contact at their asperities; the heat developed by the local pressures causes a condition which is called stick-slip and some asperities break off. At the elevated temperature and pressure conditions chemically reactive constituents of the lubricant react with the contact surface forming a highly resistant tenacious layer, or film on the moving solid surfaces (boundary film) which is capable of supporting the load and major wear or breakdown is avoided. Boundary lubrication is also defined as that regime in which the load is carried by the surface asperities rather than by the lubricant.
Besides supporting the load the lubricant may have to perform other functions as well, for instance it may cool the contact areas and remove wear products. While carrying out these functions the lubricant is constantly replaced from the contact areas either by the relative movement (hydrodynamics) or by externally induced forces.
Lubrication is required for correct operation of mechanical systems pistons, pumps, bearings, turbines, cutting tools, etc. where without lubrication the pressure between the surfaces in close proximity would generate enough heat for rapid surface damage which in a coarsened condition may literally weld the surfaces together, causing seizure.
In some applications, such as piston engines, the film between the piston and the cylinder wall also seals the combustion chamber, preventing combustion gases from escaping into the crankcase.