Tuesday 28 January 2014

Rotary solenoid

The rotary solenoid is an electro mechanical device used to rotate a ratcheting mechanism when power is applied. These were used in the 1950s for rotary snap-switch automation in electro mechanical controls. Repeated actuation of the rotary solenoid advances the snap-switch forward one position. Two rotary actuators on opposite ends of the rotary snap-switch shaft, can advance or reverse the switch position.
The rotary solenoid has a similar appearance to a linear solenoid, except that the core is mounted in the center of a large flat disk, with two or three inclined grooves cut into the underside of the disk. These grooves align with slots on the solenoid body, with ball bearings in the grooves.
When the solenoid is activated, the core is drawn into the coil, and the disk rotates on the ball bearings in the grooves as it moves towards the coil body. When power is removed, a spring on the disk rotates it back to its starting position, also pulling the core out of the coil.
The rotary solenoid was invented in 1944 by George H. Leland, of Dayton, Ohio, to provide a more reliable and shock/vibration tolerant release mechanism for air-dropped bombs. Previously used linear (axial) solenoids were prone to inadvertent releases. U.S. Patent number 2,496,880 describes the electromagnet and inclined raceways that are the basis of the invention. Leland's engineer, Earl W. Kerman, was instrumental in developing a compatible bomb release shackle that incorporated the rotary solenoid. Bomb shackles of this type are found in a B-29 aircraft fuselage on display at the National Museum of the USAF in Dayton, Ohio.

Monday 27 January 2014

automatic gear box

An automatic transmission (also called automatic gearbox) is a type of motor vehicle transmission  that can automatically change gear ratios as the vehicle moves, freeing the driver from having to shift gears manually. Most automatic transmissions have a defined set of gear ranges, often with a parking pawl feature that locks the output shaft of the transmission stroke face to keep the vehicle from rolling either forward or backward.
Similar but larger devices are also used for heavy-duty commercial and industrial vehicles and equipment. Some machines with limited speed ranges or fixed engine speeds, such as some forklifts and lawn mowers, only use a torque converter to provide a variable gearing of the engine to the wheels.
Besides automatics, there are also other types of automated transmissions such as a (CVT) and semi automatic transmission, that free the driver from having to shift gears manually, by using the transmission's computer to change gear, if for example the driver were redlining  the engine. Despite superficial similarity to other transmissions, automatic transmissions differ significantly in internal operation and driver's feel from semi-automatics and CVTs. An automatic uses a torque converter instead of a clutch to manage the connection between the transmission gearing and the engine. In contrast, a CVT uses a belt or other torque transmission scheme to allow an "infinite" number of gear ratios instead of a fixed number of gear ratios. A semi-automatic retains a clutch like a manual transmission, but controls the clutch through electro hydalic means.
A conventional manual transmission is frequently the base equipment in a car, with the option being an automated transmission such as a conventional automatic, semi-automatic, or CVT. The ability to shift gears manually, often via paddle shifters, can also be found on certain automated transmissions  semi-automatics (BMW SMG), and CVTs 
The first automatic transmission was invented in 1921 by Alfred Horner Munro of Regina, Saskatchewan, Canada, and patented under Canadian patent CA 235757 in 1923. (Munro obtained UK patent GB 215669 215,669 for his invention in 1924 and US patent 1,613,525 on 4 January 1927). Being a steam engineer, Munro designed his device to use compressed air rather than hydraulic fluid, and so it lacked power and never found commercial application. The first automatic transmissions using hydraulic fluid were developed by General Motors during the 1930s and introduced in the 1940 Oldsmobile as the "Hydra-Matic" transmission. They were incorporated into GM-built tanks during world war ll and, after the war, GM marketed them as being "battle-tested".

Sunday 26 January 2014

disc brake

disc brake is a wheel brake which slows rotation of the wheel by the friction caused by pushing brake pads against a brake disc with a set of calipers. The brake disc (or rotor in American English) is usually made of cast iron, but may in some cases be made of composites such as reinforced carbon-carbon or ceramic matrix composites. This is connected to the wheel and/or the axle. To stop the wheel, friction material in the form of brake pads, mounted on a device called a brake caliper, is forced mechanically, hydraulically, pneumatically or electromagnetically  against both sides of the disc. friction causes the disc and attached wheel to slow or stop. Brakes convert motion to heat, and if the brakes get too hot, they become less effective, a phenomenon known as brake fade.

.

Saturday 11 January 2014

Magneto ignition systems

The simplest form of spark ignition is that using a magnet. The engine spins a magnet inside a coil, or, in the earlier designs, a coil inside a fixed magnet, and also operates a contact breaker, interrupting the current and causing the voltage to be increased sufficiently to jump a small gap. The spark plugs are connected directly from the magneto output. Early magnetos had one coil, with the contact breaker (sparking plug) inside the combustion chamber. In about 1902, Bosch introduced a double-coil magneto, with a fixed sparking plug, and the contact breaker outside the cylinder. Magnetos are not used in modern cars, but because they generate their own electricity they are often found on piston engined aircraft engines and small engines such as those found in mopeds, lawnmowers, chainsaws, etc. where a battery-based electrical system is not present for any combination of necessity, weight, cost, and reliability reasons.
Magnetos were used on the small engine's ancestor, the stationary hit and miss" engine which was used in the early twentieth century, on older gasoline or distillate farm tractors before battery starting and lighting became common, and on aircraft piston engines. Magnetos were used in these engines because their simplicity and self-contained operation was more reliable, and because magnetos weighed less than having a battery and dynamo or alternator
Aircraft engines usually have dual magnetos to provide redundancy in the event of a failure, and to increase efficiency by thoroughly and quickly burning the fuel air mix from both sides towards the center. The Wright brothers used a magneto invented in 1902 and built for them in 1903 by Dayton, Ohio inventor, Vincent Groby Apple. Some older automobiles had both a magneto system and a battery actuated system (see below) running simultaneously to ensure proper ignition under all conditions with the limited performance each system provided at the time. This gave the benefits of easy starting (from the battery system) with reliable sparking at speed (from the magneto).

Monday 6 January 2014

Power steering

Power steering helps drivers steer vehicles by augmenting steering effort of the steering wheel. Hydraulic or electric actuators add controlled energy to the steering mechanism, so the driver needs to provide only modest effort regardless of conditions. Power steering helps considerably when a vehicle is stopped or moving slowly. Also, power steering provides some feedback of forces acting on the front wheels to give an ongoing sense of how the wheels are interacting with the road; this is typically called "rοad feel".
Representative power steering systems for cars augment steering effort via an actuator, a hydraulic cylinder, which is part of a servo system. These systems have a direct mechanical connection between the steering wheel and the linkage that steers the wheels. This means that power-steering system failure (to augment effort) still permits the vehicle to be steered using manual effort alone.
Other power steering systems (such as those in the largest off-road construction vehicles) have no direct mechanical connection to the steering linkage; they require power. Systems of this kind, with no mechanical connection, are sometimes called "drive by wire" or "steer by wire", by analogy with aviation's "fly by wire". In this context, "wire" refers to electrical cables that carry power and data, not thin-wire-rope mechanical control cables.
In other power steering systems, electric motors provide the assistance instead of hydraulic systems. As with hydraulic types, power to the actuator (motor, in this case) is controlled by the rest of the power-steering system.
Some construction vehicles have a two-part frame with a rugged hinge in the middle; this hinge allows the front and rear axles to become non-parallel to steer the vehicle. Opposing hydraulic cylinders move the halves of the frame relative to each other to steer.

Sunday 5 January 2014

Design and function of Air brake

Compressed air brake systems are typically used on heavy trucks and buses. The system consists of service brakes, parking brakes, a control pedal, air storage tank. For the parking brake, there is a disc or drum brake arrangement which is designed to be held in the 'applied' position by spring pressure. Air pressure must be produced to release these "spring brake" parking brakes. For the service brakes (the ones used while driving for slowing or stopping) to be applied, the brake pedal is pushed, routing the air under pressure (approx 100–120 psi or 690–830 kPa) to the brake chamber, causing the brake to be engaged. Most types of truck air brakes are drum brakes, though there is an increasing trend towards the use of disc brakes in this application. The air compressor draws filtered air from the atmosphere and forces it into high-pressure reservoirs at around 120 psi (830 kPa). Most heavy vehicles have a gauge within the driver's view, indicating the availability of air pressure for safe vehicle operation, often including warning tones or lights. Setting of the parking/emergency brake releases the pressurized air in the lines between the compressed air storage tank and the brakes, thus allowing the spring actuated parking brake to engage. A sudden loss of air pressure would result in full spring brake pressure immediately.
A compressed air brake system is divided into a supply system and a control system. The supply system compresses, stores and supplies high-pressure air to the control system as well as to additional air operated auxiliary truck systems (gearbox shift control, clutch pedal air assistance servo,, etc.).
Control system The  air compressor is driven by the engine either by crankshaft pulley via a belt or directly from the engine timing gears. It is lubricated and cooled by the engine lubrication and cooling systems. Compressed air is first routed through a cooling coil and into an air dryer which removes moisture and oil impurities and also may include a pressure regulator, safety valve and a smaller purge reservoir. As an alternative to the air dryer, the supply system can be equipped with an anti freeze device and oil separator. The compressed air is then stored in a reservoir (also called a wet tank) from which it is then distributed via a four way protection valve into the front and rear brake circuit air reservoir, a parking brake reservoir and an auxiliary air supply distribution point. The system also includes various  check, pressure limiting drain and safety valves.
The control system is further divided into two service brake circuits: the parking brake circuit and the trailer brake circuit. This dual brake circuit is further split into front and rear wheel circuits which receive compressed air from their individual reservoirs for added safety in case of an air leak. The service brakes are applied by means of a brake pedal air valve which regulates both circuits. The parking brake is the air operated spring brake type where its applied by spring force in the spring brake cylinder and released by compressed air via hand control valve. The trailer brake consists of a direct two line system: the supply line (marked red) and the separate control or service line (marked blue). The supply line receives air from the prime mover park brake air tank via a park brake relay valve and the control line is regulated via the trailer brake relay valve. The operating signals for the relay are provided by the prime mover brake pedal air valve, trailer service brake hand control (subject to a country's relevant heavy vehicle legislation) and the prime mover park brake hand control.